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~ e t - - T h e  main difficulty in the mathematical simulation of two-phase flows of gas-condensate or 
gassed oil in reservoirs is connected with a choice of binary or ternary models of hypothetical components 
representing the real multi-component mixture. The reduction of the number of degrees of freedom is 
illustrated by a plot of dependence of Gibbs concentration parameter on pressure for some numerical 
solutions. These solutions are calculated on the basis of balance equations, generalized Darcy law and 
equilibrium phase composition for a system of methane-n-butane--decane. It is shown that a binary model is 
adequate for the simulation of steady, quasi-stationary and self-similar flows into a well. Mathematical 
simulations of well-capacity for steady flows and processes of pressure build-up are considered. 

The mathematical problem of gas-condensate driven by dry gas is formulated. The corresponding 
solution with discontinuities is discussed by means of balance laws for jumps. It is shown that in the case of 
gas cycling processes a ternary model is necessary as the simplest one. 

The different approaches to the problem are also discussed. 

i. FUNDAMENTAL PRINCIPLES 

Multi-component gas-liquid flow of hydrocarbon mixture through porous media represents a 

motion of two interpenetrating continuous fluids consisting of gas and liquid phases in a system 
of pore channels. The flow of such a system differs from the motion of a system consisting of a 

gas-water mixture in a continuous exchange of component masses between phases. Due to a 

high heat capacity of solid particles making up the porous medium and low flow-rates, 

deviations from isothermal conditions are negligible. Therefore, for the description of the flow 
it is unnecessary to account for heat flux and it is sufficient to introduce component mass 

balance equations (Nikolaevskii 1965; Nikolaevskii et al. 1968; Gurevich et al. 1968; Rozenberg 

et al. 1969): 

a 
m(pLSlr + p6(1 - S)gr)  + div(pLlrvL + pogrva) = 0 [1] 

where m is porosity, S is pore saturation of a liquid phase, VL, VO; PL, Pt ;  It, gK are flow-rates, 

densities and mass component concentration (k = 1, 2 . . . . .  ~ of liquid and gas phases, respec- 
tively. In these equations, effects of diffusion in a flow (Scheidegger 1954; Nikolaevskii 1959) 

are omitted. Balance equations of component masses must be supplemented by the equations of 

motion, connecting the flow-rates VL, Va with a pressure gradient, and by constitutive 
relations for the concentrations of gr,  IK components in co-existent phases. The flow-rates are 
related to pressure gradients Pt,  PL according to the generalized Darcy law: 

k k 
v 6 = - - -  fo"  grad Po, v L . . . .  [r grad PL. [2] 

~o ~L 

Here t*6,/ZL are gas and liquid viscosities, respectively; k is the permeability of the medium to 
a homogeneous flow; f~, fL are relative permeabilities of gas and liquid phases, respectively. 
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Relative permeabilities are well-known experimental non-linear functions of saturation (Col- 
lins 1961). The generalized Darcy law[2] corresponds to the assumption that the main 
resistance to flow is proportional to the rates of phases relative to the porous medium (in the 
present case the porous solid is immobile). The condition of proportionality of forces of phase 
interaction to phase rates is expressed by the Onsager principle for a model of interpenetrating 
continua (Nikolaevskii 1968). 

Some known experimental data (Efros 1963) indicate that in the case of phase transition, fa 
and fL do not appear to be single-valued functions of saturation. Probably this is connected 
with variation in interracial tension due to changes in phase composition (Nikolaevskii et al. 

1%8). However, at the present stage of theoretical development it is reasonable to consider that 
phase changes do not affect the law of flow[2]. We assume that exchange of component masses 
occurs during of a relative phase movement as well as at rest. 

The phase pressures Pc and PL differ in value from each other: 

PG - PL = Pc( S) = tr ~ ( k ) " o~( S, O ) [3] 

where Pc(S) is the capillary pressure, ~(S,  0) is the Leverett function of saturation and 0 is the 
contact angle (Collins 1961). The above relation [3] corresponds to the condition of static 
equilibrium when the pore space is saturated with two phases. Variation in component 
composition under phase transition involves changes in interphase tension ~r. Under local 
thermodynamical equilibrium the phase compositions gr, lr are interrelated by the condition of 
equalities of chemical potential of components in co-existent phases. For example, the 

chemical potential of the first component in a gas phase depends on the total phase composition 
gr and phase pressure Pc. Due to this condition, generally speaking, potentials must include not 
only phase composition but also saturation s in terms of capillary pressure Pc (Nikolaevskii et 
al. 1%8). In a porous medium the interaction with solid surfaces may also affect the values of 

chemical potentials ~pa~, ¢LK of components in phases. 
However, one may simplify the formulation of the problem by assuming that in a flow the 

distribution of components among phases is locally the same as in the case when the porous 
medium is absent, as for example in a PVT bomb. Accordingly, the difference in phase pressure 
may be neglected, assuming that Pa = PL = P. With this the equations defining the chemical 

composition of phases have the form: 

gK = gk(P, T, C/), IK = lk(p, T, C I) [4] 

in which the number of additional independent arguments C~ (e.g. of the concentrations or their 
combinations) according to the Gibbs rule is equal to ~ -  L Here ~ is the number of mixture 
components, and I is the number of phases. In the present case, ! = 2, temperature T is 
constant and if the mixture is binary ( ~  = 2), the phase composition depends only on pressure. 
The ternary mixtures (~  = 3) are characterized by pressure and by one Cl-parameter, that is 
gK = gr(p, C), lr = It(p, C). Very often the independent parameter is chosen as follows 

(Nikolaevskii et al. 1968): 

C -  12 [5] 
12 + 13" 

2. HYPOTHETICAL MODELS OF MIXTURES 

We have two important cases. The first case is the oil flow, in which the transition of 
dissolved gas into a free gas phase occurs under pressure reduction. The second case is the flow 
of hydrocarbon gas mixture which is characterized by retrograde condensation, that is, by 
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liquid phase separation under pressure reduction. It should be pointed out that this effect may 
be explained (Pearson 1958) by the Van-der-Waals forces of interaction among molecules of 
different components. Under further deep pressure reduction in gas--condensate mixture the 
retrograde evaporation occurs, so that the region of existence of two-phases may be bounded: 
p_<~p<~p+. 

The difficulty of experimental measurement of constitutive relations [4] in multi-component 
mixtures constitutes a real problem for practical use of the mathematical model. Therefore, one 
may employ a simple model consisting of two or three hypothetical components. 

For gassed oil generally a binary model is used. In this case the first component is a stable 
oil and the second one is a gas in solution, as well as in a state of free gas phase. The methods 
of estimating of the functions/l(P), PL(P), Pc(P) and/zL(p),/z6(p) are well known (it is usually 
supposed that gl(P) - 0). The above binary model, apparently, is sufficient for the most gassed 
oil since the mass content of dissolved gas is not large. However, for light oils calculations 
based on a binary model are insufficient and a ternary system must be used with the 
introduction of a hypothetical intermediate component (Rozenberg et al. 1969). 

For gas-condensate reservoirs the binary models were suggested by Mirzadjanzade et al. 

(1967). Some comments on their approach were made by Nikolaevskii (1971). 
Kniazeff & Nevill (1962; 1965) have made use of a binary mixture model in their cal- 

culations. These authors considered pressure change in a reservoir under depletion regime as 
well as pressure distribution in the vicinity of a well during the period when the well was 
exploited and the period when the well shut off. A binary model was used also by Abasov & 
Gasanov (1963) and by Eilerts (1964), who considered a flow mixture in reservoir. He assumed 
that the pressure distribution was uniform and flow was homogeneous initially and calculated 
the change of saturation. 

However, for gas-condensate mixture flows the reasonable selection of binary or ternary 
model is more complicated. Although such a mixture primarily consists of methane, the 
distribution of remaining components is uniform and their mass content (because of high 
molecular weight) is important. In the case of gassed oils the liquid phase is dominating, but in 
gas--condensate mixtures the gas phase is dominating. The thermodynamic state of gassed 
oils may change because of the pressure changes (if we exclude the c6stly solvent flooding 
process--Arnold et al. 1960; Welge et al. 1961) and therefore a binary model with one degree of 
freedom (pressure) may be sufficient. The thermodynamic state of gas-condensate mixture in a 
reservoir of course varies with both pressure changes and changes in composition. The latter 
situation is often realized during the recycling process--by dry gas drive (Abel et al. 1970; 
Afanas'ev et al. 1969; 1970; 1971). For an adequate description of such a process it is necessary 
to use at least a ternary mixture because of its additional degree of freedom. 

In order to identify the types of flows, for which a binary model may be sufficient, the 
thermodynamic state of mixture must be characterized by the points of the plane C, p. This is 
shown in figure 1 for the ternary mixture (Sage et al. 1950) of methane-n-butane--decane with the 
initial content: 0.517-0.268-0.215, respectively; that is when the parameter C(p)  has the initial 
value Co = 0.38. If the points lie approximately along the same curve C(p) ,  for calculations of 
corresponding flow one may use a hypothetical binary mixture, simulating a real ternary 
mixture. For instance, calculations performed with the help of a computer show (Nikolaevskii 
et al. 1968; Gurevich et al. 1968), that for processes of flash condensations (pressure reductions 
by an expansion of the volume V in a PVT bomb under the constant total composition) and of 
differential condensations (pressure reductions with a monotonous release of the gas from the 
bomb under V = const, condition) the curves are similar and moreover they are approximately 
coincident. 

In some papers (Roebuck et al. 1969; Culham et al. 1969) the component distribution among 
phases in multi-component mixture flows is determined by equilibrium constants dependent on 
pressure. This is equivalent to an assumption that the set of parameters characterizing the 
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Figure 1. Influence of the dimensionless pressure P(Pi = 255.1 at, P = plp~) on the parameter of com- 
position C = 121(I. + 1.) under differential and flash condensations (and for different variants of gas with- 
drawal solutions (l, and 13 are the mass components of the second and third components in the fluid phase). 
O-- differential condensation; O - -  flash condensation; - - - - - -  quasisteady state solution; A - -  self-similar 
solution. (1) Gas withdrawal with recycling of half of the volume of dry gas, starting at the maximum 
saturation pressure of condensation. (2) Gas withdrawal with recycling of the total volume of dry gas at the 
pressure of the beginning of retrograde condensation. (3) The same as on curve 1, but at the pressure of the 
beginning of retrograde condensation. (4) The same as on curve 2, but at the maximum saturation pressure 

of condensation. 

multi-component mixture depend on pressure and on an initial value of parameter C of a 
ternary model (figure 1). 

Figure 2 shows the dependence of saturation on pressure p for the processes of flash and 
differential condensations of the ternary mixture. The curves S(p) are named as isotherms of 
condensation. It should be pointed out that the relative deviations of isotherms S(p) are 
essential. These pressure-saturation relationships S(p) are functionals but not functions 
because they depend on the way of realizations of the process. This is the reason why 
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Figure 2. Condensation isotherms S(P)  under different processes (1, 3, 4--  see figure 1). 
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isotherms cannot be used directly instead of [4]. But at the same time it is erroneous to assume 
that due to differences of isotherms the relations [4] are not identical for the different processes 
(Collins 1961; Mirzadjanzade et al. 1967). In general, using isotherms of condensation and mass 
balance of "hypothetic" components, the phase composition dependence of the parameters of 
state may be calculated. For example, the method of calculation of hypothetical binary models 
on the basis of isotherms of differential condensation was proposed (Kniazeff et al. 1962; 1965). 
The method describing the use of isotherms of differential condensation altogether with 
composition of released gas phase for determination of a hypothetical model for ternary 
mixtures was discussed elsewhere (Nikolaevskii 1968; Gurevich et al. 1968). 

If the dry gas (methane) from the released gas portion is returned to a PVT bomb (Gurevich 
& Nikolaevskii 1965), then the curves S(p) change sharply and one may see essential 
deviations of points C, p from the averaged curve C(p) (see dotted curves 1-4, figures 1 and 2). 
It means that binary models are not sufficient for the simulation of dry gas drive processes in 
gas--condensate reservoirs. 

3. WELL FLOW 

For the investigation of a steady well production regime the stationary solutions of the flow 
equations are necessary. Such solutions (Khristianovich 1941; Muscat 1949; Rozenberg 1954; 
Mikhailov et al. 1970) make use of the condition of constant mass flow-rate of the k-th mixture 
component relative to the total mass flow-rate along the streamline (Nikolaevskii et al. 1968; 
Rozenberg et al. 1969; Mirzadjanzade et al. 1967; Kurbanov et al. 1966): 

grad Fr  = grad p O g k  V G + p L  Ik V L = O . 
p~v~ + pLVL 

[6] 

The steady flow of a ternary mixture was investigated (Rozenberg et al. 1969) without the 
introduction of a zone where the conditions [6] are violated.t The conditions of stationary flow 
[6] are not satisfied in the region where both phases are present with one phase being immobile 
(Millionshchikov 1949); in the case of gas-condensate flows--the liquid phase (Nikolaevskii et 
al. 1968; Gurevich et al. 1968). 

Usually the relative permeability fL(S) is such that fL(S) = 0 in the interval 0 < S < 0.2. Then 
the zone of immobile liquid phase may be the ring zone around a gas--condensate well; on the 
internal boundary of the zone S is equal to 0.2 and on the external boundary S = 0, p = pl. In 
the immediate vicinity of a well it may be that S > 0.2 and the condition [6] is satisfied. For such 
zones it was proposed and calculated for the ternary mixture the above mentioned quasi- 
stationary solution in which C and p were assumed to be functions of the distance r from the 
well only, but the saturation S was a function of both distance r and time (Nikolaevskii et al. 
1968; Gurevich et al. 1968). Then the set of [1], [2] and [4] becomes uncoupled: 

dS k d / Pc rdP)  m(-gipG + I,pL)-~ = ql(r) =-~'~ ~g, dr/  

dS k d [ Pc dp\ 
m(-g2pc + 12pL)-~ = q2(r) = ~--~ ~g2 ~'~ r-~rr) 

dS k d 
m ( - p o + P t , ) - ~ = q ( r ) = - ~ z  ( - ~ r ~ r r ) .  

[7] 

From the above equations it is seen that ql, q2 may be expressed in terms of q(r). Then the 
set of equations may be solved with respect to C(r), p(r), q(r). Finally, one may determine the 

tThese calculations include also states which are not in the local thermodynamic equilibrium (Rozenberg et  al. 1968). It 
turns out that this effect brings some relative increase in gas-phase flow rate. 
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accumulation of the saturation S(r, t) with time. It is not difficult to notice that the boundary 

between the zones of the mobile liquid and the immobile liquid phase will move in time. It is 
very important that with the change of cumulative production-rate Q of a well the composition 
of a mixture influx to a well (the gas-condensate ratio) changes also although in the outer zone 
of reservoir the gas composition is fixed. This effect is related to the changes of a regime of 
flow in the zone of a immobile liquid phase. 

An alternative approach involves the determination of completely unsteady solution. It is 
clear that the problem of mixture flux from an infinite stratum to a well (when the well is run 

with a constant production-rate) shortly becomes self-similar. Rozenberg (1952) was the first 
one who showed the existence of such solution for a set of equation considered here. 

The set of equations has the form: 

n_.. d _ S)+ pdkS]+ d~ [(pagja(S) + dkA(S)~ dp 2 -~-~m[pagk(1 L\ /~c P -~--L/~~] =0  (k = 1,2,3) [81 

if 7/= r/x/t. The boundary at which the condensation begins is determined by the condition 

p = p. ;  here the conditions of continuity of parameters p, C and gas rate are fulfilled (Somov 
1967). At infinity a state of rest prevails. Under p > p+ the flow follows the differential equation 
of real gas flow. 

Figure 3 gives the typical results for a dimensionless flow rate Q*=/zL0" Q/(TrkhPiplo)= 
0.0277. Analysis given in the mentioned paper (Somov 1967) shows that in the domain of liquid 
phase accumulation (0 < S ~< 0.2) there is interval where the condition p - In r is satisfied. This 
condition is characteristic (Gurevich 1966) of a quasi-stationary solution. In the immediate 

vicinity of a well saturation, S is very rapidly approaches high values (S = 0.5 + 0.6). The main 
variations of C-parameter, pressure and saturation occurs in the zone of condensate mobility. 
Here are also stabilized the production rate along with the k-th component fraction in the total 
flux. The gas--condensate ratio of influx again depends on a flow rate Q. It is essential for 
investigation of well-productivity and the state of reservoir. 

Data for states of coexistent phases in quasi-stationary flows as well as data for self-similar 

solutions were also drawn on the plane C, p(figure 1). It is turned out that in these cases curves 
are also sufficiently close to the curves for flash and differential condensations. It confirms the 
fact that the binary mixture model is sufficient for the solution of the above problems. 

In this connection it is convenient to note that Gondouin et aL (1967) treated, with the help 
of a binary model, the problem of mixture flux with regard to isochronal method of back- 
pressure testing of gas-condensate wells. 
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Figure 3. Self-similar solution results on the gas-condensate flow problem. 
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For one-dimensional plane flow of gassed oil numerical solutions have been described by 
Egorov & Rozenberg (1963) and by Tomelgas & Filinov (1966). It is not difficult to make up also 

the self-similar solution for a plane flux to a gallery from an infinite gas-condensate stratum 
under the assumption of a constant pressure p at the gallery when T ~> 0. It ha~, been found 
(Afanas'ev et al. 1971) that in this case the zone of condensate mobility is practically absent. 

Numerical methods exist based on computer solutions of the flow in the vicinity of a well 

under pressure build up condition (Somov 1970b). Figures 4--6 show successive distributions of 
pressure, saturation and the C-parameter under pressure build-up condition in a stratum after 

the well has been shut-off. (Formation gas composition is: CH4 = 83.8; C4H~o = 4; CIoH22 = 12.2 
mass per cent; p~ =0.933; C=0.0405; initial production rate Q=0.0277.) It seems that 
saturation in the bottom zone does not decrease but on the contrary increases somewhat. This 
is evolved by a sharp change of mixture composition near the bottom hole; here the C- 
parameter ceased not to be single-valued function of pressure in the vicinity of well C rapidly 
grows. 

On the curve of bottom pressure p dependence of In t (figure 7) one may distinguish two 
intervals--the first one characterized the near zone; the second one--the distant zone where 
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Figure 4. Reservoir pressure (P) distribution at different times (~-) after the well shut-in. 
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Figure 5. Reservoir saturation (S) distribution at different times (¢) after the well shut-in. 
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Figure 6. Distribution of the composition parameter (C) at different times (¢) after the well shut-in. 
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Figure 7. The bottom build-up curve (Pw) after the well shut-in. 

S = 0. For the treatment of curves of measured pressure build-up it is possible to introduce the 

following function: 

It then seems that the relationship AH/Q =/ ( In  t) may be represented in this problem as a 
straight line. But for calculations of the function AH, a priori, the saturation distribution is 

requested which in practice is unknown. 
Businov et al. (1973) suggested the method of calculation of the function H on the base of 

flash condensation measurements and of well-known procedure of determinations of viscosities 
/z6 and/zL. The approximate procedure of determination of H ( P )  was developed by Ahmedov 

et al. (1975). 
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It is useful to note the attempt by Bokserman et al. (1963 a, b) to reduce sets of equations of 
gassed liquid flows to the Fourier linear equations with regard to interpretation of pressure 
build-up curves of a well. However, the foundation of such a method is lacking. 

JUMP CONDITIONS 

When gas-condensate two-phase mixture is displaced by dry gas in a reservoir there occurs 
a flow with moving surface of discontinuities in phase composition and saturation (Gurevich et 

al. 1968). As usual in continuum mechanics, the diffusive and capillary effects lead to spreading 

this discontinuity over some finite zone. 
Discontinuous solution of flows of multi-component mixtures was apparently first in- 

troduced by Welge et al. (1961) with regard to the process of oil displacement by enriched gas. 
This problem was solved approximately: the pressure distribution over a stratum was con- 
sidered uniform and the velocities of propagation of the characteristics S = const, and C = const. 
were assumed to be the same. 

A more schematic method of the process of displacement was proposed by Kundin et al. 

(1966). They supposed that mass exchange of components occurred instantly at the line of 
discontinuity but in the main flow the phase composition does not change. The process of 
hydrocarbon mixture displacement by high pressure gas was investigated by Price et al. (1967) 
with an assumption of constant pressure at line of injection. 

Let us consider balance laws for the surface of discontinuity. If a surface discontinuity is 
moving with the velocity U, the mass balance equation of components (without chemical 
reactions) are the following ones: 

[Pog~(vo - U m  (1 - S)) + pLIk(vL -- UrnS)] = O. [91 

H e r e  [ a ]  = a ÷ -  a- means a jump of the function a from value before the surface to the value 
behind it. According to the Darcy law the condition of continuity of pressure is fulfilled: [p] = 0, 
that is, in a binary model phase composition always varies continuously but sharp changes in 
gas composition may only occur in a ternary mixture. 

We now consider in detail the relations [9] for a ternary mixture. If the values 
p- ,  S - ,  C- ,  (dpldx)-  before the front are known, then the relations [9] contain four unknown 
parameters: S +, C +, (dp/dx) +, U. However, it is more convenient to treat the values of cumula- 
tive volumetric rate W before the jump IV_ and after the jump IV+ and also the velocity U of 
the jump as unknown, 

The set of equations then take the form 

Ak-" W_ - Ak + IV+ - (Bk- - B~+) • U = 0 (k = 1, 2, 3) [1o] 

where 

A~ = po(l - F)gk + pLFIk, Bk = m[pt(l - S)gk + pLSlk]'~ 

v~ = (1 - F ) W ,  VL = F "  W;  F = f ~ l ~  
/ d z o  + f d z L  " 

It is not difficult to write out the condition of existence of an non-trivial solution of the 
system: 

p~+pL+(F + -  S+) • [(p~-(1 - F - )  . dP(gk-, gk +, ik +) + pL-F-dP(lk-, gk +, lk+)] 

+ po-pL-(F- -- S-) . [po+(l - F+) • dP(gk +, gk-, Ik-') + PL+ F+dP(Ik +, gk-, /k-)] = 0 [11] 
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where the symbol ~ indicates the determinant of a following type 

• (xk ,  y , ,  zk)  = x3(y2z3  - y3z2) + x2(y3z3 - y~z~) + x3(y3z2 - y2zO.  

Under the given value of W÷,[10] gives 

A3 Az W+ [121 W_ = ~ "  W+, U = A  m 

A = { p o - p L - ( F -  - S - ) "  ( g , -  - l , - ) + p o + ( 1  - S + ) .  [po-(1 - F - ) -  (g,- -g ,+)  

+ p L - F - ( 1 3 -  - g~+)] + pL+ S +.  [po-(l - F - )  . (g3 -  - 13 +) + p L - F - ( 1 3 -  - l()]} 4= 0 

A3 = - { p O + p L + ( F  + - S+)(gl + - 13 +) + p a - ( 1  - S - ) .  [po+(1 - F+) • (g,+ - gl-) 

+ pL+F+(13 + - g,-)] + O L - S - [ P c + ( I  - F+)  " (g3 + - 13-) + OL+F+(13 + - 13-)]} [13] 

A2 = po-(1 - F - ) -  [pa+(1 - F + ) ( g ,  - - g3 +) + pL+ F + ( g  3- -- lj+)] 

+ p L - F - [ p o + ( 1  -- F +)  • ( l~- - g3 +) + pL+FL+(13 - -- l ( )] .  

Set of equations [10] leads to the system consisting of three equations [11], [12] on the basis 
of which we can obtain a number of particular solutions. 

For example, if a ternary mixture behind the discontinuity is in single phase state (injected 
gas, S + = 0, F + = 0) and before the discontinuity it is in a two-phase state and the liquid phase 
is still immobile S-  4= 0, F -  = 0 then from [11], [12] one has: 

dP(gk+, gk - ,  lk-) = 0 

+ - 1  - ~ + + - S -  - + P c  [Pc ( - S ) ( g l  - g l  ) PL (ll - g l  ) 

U = W+ pa+(gj-- g~+) 
m p a + ( g l - -  g l  +) + p L - S - ( l j - -  g l - ) "  [14] 

From the first relation [14] it follows that the gas-condensate mixture composition immediately 
before the surface of discontinuity is completely determined if the parameters of injected gas 
are known. 

G a s - c o n d e n s a t e  d r i v e  s o l u t i o n  

Consider a plane, one-dimensional self-similar solution of dry gas injection into gas- 
condensate stratum, (Afanas'ev et  al.  1969, 1970, 1971). We suppose that the injection pressure is 
below the pressure p+ and the injected gas breaks through into the zone filled by gas- 
condensate two-phase mixture. The injected gas is either enriched by evaporation of heavy 
components or is dissolved into the liquid phase. Which of these processes will dominate 
depends on the mixture and injected gas compositions. The front of injection may coincide with 
one of the above mentioned surfaces of discontinuity of flow parameters. 

Substitution of rl = x / ' v / t  reduces [1]-[4] to a system of non-linear ordinary differential 
equations 

d [ ( p o g ~ + p L I ~ f L ) d p ]  ~ d  
d---~L\ /~'  txt_ , 'd '~ + 2 - d - ~  [ m p a ( 1 - S ) g k + p L l k S ] = O "  [15] 

Equation of flow of injected gas (7/> ~1) becomes: 

1 -~(mpa +) = O. [161 
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Here ~h = x d ~ / t  is coordinate of the surface of discontinuity a = po+lt~c +. 

Let us assume, that across the surface of discontinuity the conditions [14] are fulfilled. In 

addition at the line of injection we have the following conditions 

and at infinity: 

p = pw = const, gk = const, 7 /~0  [17] 

p =p=, S = S = ,  C = C = ,  ~ .  [18] 

Here one has a two-point boundary value problem with one boundary point at infinity. To 

further simplify numerical calculations the Cauchy problem was solved for [15], [16] with the 
conditions [14] at the surface of discontinuity and the additional condition [17] (dp/drt)= const 
at rt ~0 .  It was also assumed that before the surface of discontinuity there exists an a priori 

value of saturation: 

S- = So under ~ : 71' 

Then the values of p, S, C corresponding to ultimate plane regions of cumulative curves were 

considered as conditions in infinity [18]. 
An example of calculations is given in figure 8. Depending on the combination of initial 

parameters, both the processes of evaporation and the processes of gas solution in condensate 
may happen when one process interchanges the other during the breakthrough of the injected 
gas. When gas solution prevails a "billow" (a region of a raised concentration of intermediate 

component) is spontaneously formed before the surface of discontinuity. In cases having an 
distinctly expressed minimum on the curves S = S(rt) this point usually corresponds to a raised 
concentration of the light component. 

It should be pointed out that the velocity of the surface of discontinuity depends on 
injection pressure, mass composition and a quantity of injected gas. 

The processes of gassed oil drive by gas or water are usually investigated without account 

of phase transitions. Here we note only the papers by Coats et al. (1967, 1968) who treated the 
problem with the help of an analogue computer. 
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Figure 8. Self-similar solution results for the dry gas injection into the gas-condensate reservoir. 
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Depletion regime o f  reservoir 

The main feature of problems simulating of depletion type or reservoir regime is a presence 
of impermiable outer boundaries. Due to the complexity of sets of equations for such 
unstationary problems, approximate methods of solution were developed. These solutions for 
the case of gassed oil are based on the application of balance method and successive change of 
steady states. Sufficiently complete reviews on the subject were published by Rozenberg et al. 

(1969), Mikhailov et al. (1970) and Polubarinova-Kochina et al. (1969). 
Numerical calculations with the help of a computer were made in a paper by West et al. 

(1954), where the flux to a well or to a gallery in bounded reservoirs was considered. Firstly, it 
was assumed that the oil production-rate is constant and then, this condition was changed into 

the condition of constant bottom pressure. Stone et al. (1961) solved a plane one-dimensional 
problem under various boundary conditions taking gravity into account. Ridings et al. (1963) 
suggested a method for the problem accounting gravity and capillary forces. However their 
matrix method may give rise to some errors (since often the matrices may be close to a singular 
one). These authors analysed the dependence of cummulative reservoir production on the 
production rates and well spacing. Some mathematical difficulties of numerical solutions were 

discussed by Settari & Aziz (1975). 

With the help of a binary model, numerical solutions were calculated for an unsteady 
axisymmetric flow of gassed oil in a finite reservoir (Somov 1969; 1970a) with and without the 
capillary forces. Boundary conditions, corresponding to a finite reservoir, constant production- 

rate of a well and absence of capillary pressure effects on the surface of a well were assumed. 

It was shown that shortly after a well run with constant production-rate, quasi steady pressure 
distribution is established near the well. The saturation profile has a characteristic break that moves 
with time. The presence of the break corresponds to transport of almost full free gas to the well. 
The break exists until the flow of free gas begins in the entire reservoir. During the following 

periods reservoir saturation is reduced uniformly down to the value of 0.65-0.68 at the end of 

calculation. 
Similar behaviour of saturation profile was mentioned by West et al. (1954), However, when 

the production-rate is large the profiles of saturation have no characteristic break (Somov 

1970a). 
It was observed by Somov (1969), that under assigned initial data capillary forces have but a 

small effect on the flow of gas-liquid mixture (capillary effects may be essential, if pressure 
gradients in the reservoir are not too large). 

Numerical methods lead also to justified approximate methods. For example, Weller (1966), 

on the basis of the solution (West et al. 1954), suggested approximately that pressure and 
saturation over the reservoir are quasi-stationary. He treated the reservoir's development as a 

depleted type. 
It is known that differential condensation simulates the depletion type of development of 

gas-condensate reservoirs. Of course, the corresponding data are rough and need correction. In 
this regard we note the work of McFarlane et al. (1967) who numerically calculated an 
approximate solution. At the beginning the pressure distribution was calculated and then 
the change in composition for an interval of time and saturation of a multi-component 

mixture were found under an assumption that conditions of flash condensation are realizable. 
Attra (1961), divided a reservoir into a finite number of cells with account for a two-phase flow 
according to the theory of Backley-Leverette. Later this method was used for the solution of 
some problems of flows with phase transitions in porous media, (see, for example, Cook et al, 

1974). Numerical solution of the problem of gas injection into oil linear bounded reservoir was 
considered by Van Quy et al. (1972). These authors used ternary model of mixture. Some of 
their qualitative results for the vicinity of discontinuities were in accordance with the self- 
similar solutions (Afanas'ev et al. 1969, 1970, 1971) mentioned above. 

In case of the two-dimensional problems of flow of multi-component heterogeneous mix- 
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tures, certain mathematical problems on numerical procedures (stability aspects and methods of 
iteration) arise. It is worth noting that the method of solution of two-dimensional problems 
developed by Marchuk (1958), Saul'ev (1960) and Weinstein et al. (1970) offer the possibility of 
overcoming these difficulties. Some of these questions were investigated by Briggs & Dixon, 
(1968). 

It is useful to note that a more complete bibliography of Soviet papers on the considered 
problem up to 1967 are published in reviews (Mikhailov & Nikolaevskii 1970: Polubarinova- 

Kochina, 1969). 
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